3-LED voltage indicator (an inventor's story)
My Codidact paper 3-LED voltage indicator (an inventor's story)
This is the second paper in Codidact that I have dedicated to my students from the laboratory exercises on semiconductor devices. Here is what it is all about...
When my students were exploring all sorts of LEDs, they started having fun connecting the LEDs in series and in parallel. While in the first case they had no problems, in the second case some of the diodes did not light up... and this puzzled the students. This reminded me of my invention from the past about a LED indicator based oh this idea. And I decided to tell them this story. Here it is...
Paper
Goals and objectives
Motivation. Having shown how a 1-transistor circuit can be invented, now I will demonstrate how we can invent another more complex 2-transistor circuit. As before, my goals are two - specific (the very 2-transistor circuit) and general (the technology of invention). With my inventor's story, I just want to encourage circuit beginners to be creative by showing them another possible path to invention.
Background. My story is based on three circuit concepts:
- voltage divider acting as a reference voltage source
- BJT acting as a comparator and switch
- LED acting as a voltage stabilizer and diode switch (current steering)
They are known separately... but the way they are combined gives an inventive solution.
“Inventing” the circuit
1. Obtaining the threshold voltage VTR. To make a threshold voltage circuit, first at all, we need to set the threshold (reference) voltage. The simplest way to obtain it is by the ubiquitous voltage divider. Let's initially choose VREF = VCC/2 (or zero, in the case of a dual power supply). This means to connect two equal resistors R1 = R2 in series - Fig. 1. The voltage drops across them are equal as well - VR1 = VR2.
Fig. 1. "Producing" a reference voltage by a voltage divider R1-R2 and input voltage VIN by a potentiometer P. |
In a similar way - by the potentiometer P, we can emulate the previous stage producing the input voltage VIN (the light-to-voltage converter from my story above). Note the potentiometer and the power supply do not belong to the invented circuit that is outlined in yellow.
2. Inserting the first (middle) diode. Now we have to supply the first (middle) LED D1. Let's insert it between the two resistors - Fig. 2, to "lift" its voltage drop VD1 by the threshold voltage VIN/2. By choosing the sum of their resistance, we set the desired current through D1.
Fig. 2. Including the first (middle) LED D1. |
Now we have two slightly differing reference voltages - below and above D1.
Fig. 3. Building the upper comparator. |
When the input voltage exceeds the high threshold, T1 begins conducting and D3 will begin lighting up. But D1 should start to go out. How do we do it?
4. Building the lower comparator. Now we should use a PNP transistor (T2) by connecting its emitter to the higher reference voltage and its base to the input voltage - Fig. 4. It should switch LED D2; so we insert D2 in the emitter. Its forward voltage and T2's base-emitter voltage VBE will be subtracted from the higher reference voltage (Vcc - VR1) thus forming the low threshold voltage.
Fig. 4. Building the lower comparator. |
Now, when the input voltage drops below the low threshold, T2 begins connecting D2 in parallel to D1. The current is steered from D1 to D2 and the LEDs cross fade.
5. Combining the two comparators. Now it remains only to combine the two comparators in one window comparator - Fig. 5.
Fig. 5. Combining the two comparators in one. |
6. Simplifying the circuit. But we do not like these cross-connections. What happens if we join them to make the circuit tidier? Let's try - Fig. 6.
Fig. 6. The circuit can be simplified by joining the emitters. |
7. Usually drawn circuit. Finally, let's remove all these visual aids and draw the circuit in the conventional way - Fig. 7.
Fig. 7. The circuit is drawn without visualized electrical quantities (a dual-supplied version). |
How neat it is... small, beautiful and symmetrical!
Properties
Look at the central part of the circuit including the two transistors T1, T2 and three LEDs D1-D3. This structure has unique properties:
Constant voltage. Regardless of the state in which it is (switched on D1, D2 or D3... or an intermediate state), the voltage drop across it changes slightly. The whole structure behaves like one diode (LED).
Constant current. Also, regardless of the state, the whole current through this structure changes slightly. It only diverts between diodes (as they say, it is "steered" between LEDs). This phenomenon is known as current steering and is usually associated with the differential (long-tailed) pair.
Mobility. Figuratively speaking, this structure is "stretched" through two resistors (pull-up R1 and pull-down R2) between the supply rails. If we change simultaneously and in opposite directions their resistances, we can "move" this "diode" up to V+ and down to ground or V- without changing the voltage across it and the current through it.
Bridge circuit. If the voltage indicator is driven by a potentiometer (as it is here), the whole circuit (including the potentiometer) can be considered as a Wheatstone bridge with a zero indicator. It consists of the two potentiometer half resistances and resistors R1 and R2. The central part serves as the zero voltage indicator.
Improvements
Dual-supplied version. In addition, we can draw its dual-supplied version - Fig. 7 above.
Grounded version. If this is a zero voltage indicator, we can ground the common emitter point (shown in light gray in Fig. 7). Thus the emitter voltages will be firmly fixed.
Direct control. The circuit can be further simplified by removing RB (when the emitters are not grounded). This will make it even more sensitive. There is no danger of damage to the transistors because resistors R1 and R2 limit the base currents. Only the circuit input resistance will be lower.
Identical LEDs. The circuit can be implemented by identical LEDs (with equal VF). In this case, we can increase the D1 forward voltage by inserting an ordinary Si diode in series.
Narrow dead zone. The width of the "dead zone" is 2VBE. It can be narrowed by applying a bias voltage. It can be created by a string of two diodes in series connected between the two bases. This is a well-known bias technique widely used in output stages of power amplifiers.
Wide dead zone. Conversely, we can expand the "dead zone" (if necessary) by inserting diodes in series to the base-emitter junctions.
Comments
Post a Comment