How to Present Circuits
In 2007, I joined Wikibooks and started "my life work" Circuit Idea - a novel electronics wikibook intended for creative students, teachers, inventors, technicians, hobbyists and anyone who is not satisfied by formal circuit explanations. It is intended for people who really want to grasp the basic concepts of electronics by relying on their human imagination, intuition and emotions rather than on pure logic and reasoning.
How do we Present Circuits Using Heuristics?
Once understood how an unknown electronic circuit works with the help of heuristics, we naturally have the desire to explain it and present its operation to others - a skill necessary not only for teachers but also for everyone who deals with circuits. Therefore, in this chapter we will discuss the technology of circuit presentation.
In order to understand how an unknown circuit works, in the previous story, we went the reverse way of its creation. By breaking it down into simpler devices and trying to recognize the most general principles in its operation, we have actually retraced the evolution of the electronic device. We will now use this valuable information in the correct sequence for presentation purposes (from the beginning to the end and from the imperfect passive circuit to the perfect circuit).
We can best represent the circuit operation if we "invent" it again ("reinvent" or "pseudo-invent"). By recreating the act of invention, we form a mental toolkit of circuit tricks with which we can later really invent electronic devices.
If we do not have enough time for a complete reinvention, we may limit the presentation only to a simple building of the electronic circuit. The stages of such a representation carried out with the help of heuristic means are two - presenting the structure and presenting the operation. We will illustrate them in the next part of the exposition again through the example circuit of an op-amp inverting voltage summer, and for variety here it will be with three inputs. For the purposes of good presentation, we will reveal the circuit evolution in the direction from the passive to the active solution.
Technology of Presenting
Stage I: Introducing the circuit structure
1. Formulating the task solved by the electronic device. At the beginning, we present in a clear form the task solved by the device. For the particular example circuit of an inverting summer, it is: Sum the voltages of grounded input voltage sources; the resulting output voltage is also reffered to ground. It arises from the common ground problem of the most elementary circuit of a series voltage summer, according to which it is not possible to connect all input voltage sources to ground (see the story about parallel voltage summer).
3. Illustrating the basic idea through analogies. In order to better reveal the basic ideas in the presented electronic device, we can make associations with many analogous life situations:
Fluid analogy. Several pressure sources act through constrictions (throttles) at a common point (for example, several people inflate a common air mattress through the air resistances of individual openings.
Heat analogy. Several heat sources heat a common massive body through separate thermal "resistances" (for example, several stoves heat a common room through separate air thermal "resistances").
4. Presenting the block diagram of the device. We draw the block diagram of the device that implements the idea in the most general form, independent of the specific implementation.
5. Building the device. At this stage, we build the device sequentially, step by step, using the elementary building blocks from the collection. This is shown in the following figures, arranged sequentially as frames of a movie with explanatory text (in fact, these are actually frames of an animated Flash movie).
Stage II: Demonstrating the circuit operation
The most important part of the presentation is the demonstration of the circuit operation. Here, all the possibilities of the human imagination must be used to reveal in the most attractive way the deep essence of the phenomena.
1. Demonstration through imaginary thought experiments. This is the most popular, accessible and at the same time efficient way by which the operation of electronic devices can be illustrated. This requires only two things:
- on the part of the demonstrator - figurative speech that stimulates the "projection" of images in the minds of listeners
- on the part of the viewers – imagination to allow them to visualize things
2. Demonstration through animation - the circuit operation is presented "cinematically" by breaking it down into separate frames. The circuit operation can be presented in two successive steps:
First, we replace the active elements (transistors and operational amplifiers) in the circuit with man-controlled elements that perform their "algorithm" of action. During the demonstration, we project individual frames step by step and accompany them by verbal explanations. This allows the valuable information hidden in the transition to be displayed. For example, in the circuit of the op-amp inverting summer, we replace the op-amp with a "man controlled voltage source", a zero indicator and an actor. The role of the latter is performed by us first, and then we can assign it to one of the participants of the demonstration.
Next, we replace the man-controlled active elements in the circuit (transistors and op-amps) with program-controlled elements programmed with their "algorithm" of operation. We project the frames in a slow motion and in a continuous sequence (ie, as an animation).
3. Demonstration by real experiments. Electrical phenomena are invisible to us humans because we have no senses with which to feel them. That is why we need converters of invisible electrical quantities into tangible quantities accessible to our senses. Traditional measuring devices are not smart - they do not "know" what kind of objects are in front of them and, accordingly, in what way to visualize the information received from them. Thus, they are forced to represent electrical quantities in some standard, universal, generally accepted form - a linear movement of an arrow, a two-dimensional graphic on a screen or a digital code on a display.
For the purposes of representation, however, we need another kind of technical means in which to pre-embed an original way of representation refracted through the lens of our imagination. So programmed, this kind of "didactic x-ray" will visualize the invisible electrical quantities in the form of analogies, potential bars and diagrams, current loops, volt-ampere characteristics, etc. Its role can best be performed by a personal computer connected with suitable analog-to-digital peripherals to the experimental setup.
Under the control of appropriate software, all possible interpretations of the phenomena taking place in the studied object can "come to life" on the screen. To be more convincing, we can supplement this experimental setup with traditional measuring devices that indicate electrical quantities in a standard form.
Comments
Post a Comment