Using Cause and Effect Relationships
By the mid-1990s, I had already developed my own philosophy about electronic circuits, and I decided it was time to share it with my colleagues. In the spring of 1997, I presented a series of three papers at the XXXII Scientific Conference on Communication, Electronic and Computer Systems at the Technical University of Sofia. The first of these was devoted to my heuristic course on analog circuits, in which I had implemented my circuit philosophy. There I shared my idea of using cause and effect relationships for the purposes of understanding, presenting and inventing circuits. In this post, I will tell you about this venture of mine.
Revealing causality
As a rule, classil electronics courses do not reveal ''cause and effect relations'' in electronic circuits. For example, who cares if there is a causality and what causes what (what quantity is an input and what an output) in Ohm's law? Authors just suppose that voltage and current change simultaneously; they do not mind how the famous rule is written (I = V/R, V = I.R or R = V/I).
Only, we human beings consider every change in this world as a result of some cause (in electronics that means the output quantity is a result of the input one). We cannot imagine that the input and output quantities can change simultaneously. We know that always the input is first and the output is second; so, the output always follows (delays) the input.
Comments
Post a Comment